4
#
32
31
&
g

;ﬂ*‘wfﬁj e

R 120 0 1,

e

N79-27072
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ABSTRACT

Several models are developed for studying the impact of deviations from
course during cross-country soaring flights. Analyses are performed at the
micro-strategy and macro-strategy levels. Two types of lift sources are
considered: concentrated thermals and thermal streets. The sensitivity of the
optimum speed solutions to various model, piloting and performance parameters
is evaluated. Guides are presented to provide the pilot with criterions for
making in-flight decisions. In general, course deviations are warranted during

weak 1lift conditions, but are less justifiable with moderate to strong lift
conditions.

INTRODUCTION

There have been many attempts to develop optimum piloting strategies for
the vertical plane of cross-country soaring (for example, references 1 through
5), which basically yield an optimal airspeed given the airmass characteristics,
but little has been done with the horizontal plane. References 6 through 8
point out that substantial departures from the optimum speed-to-fly result in
small degradations in achieved speed. In fact, the biggest contributing factors
influencing average speed are maximizing the achieved rate-of-climb in 1ift and
minimizing the atmospheric sink rate between regions of 1ift. So it seems that

cross-country soaring performance is most influenced by the pilot's decisions
made in the horizontal plane.

This paper will address itself to developing some models reflecting typical
course deviation decisions a pilot is likely to be confronted with during a
cross-country soaring flight. The accompanying analysis should provide guide-
lines for the pilot to rationally select flight paths which optimize the
anticipated 1lift conditions. Two types of convective 1lift conditions are
considered: soaring conditions where the regions of lift are small relative to
the distance flown (circling required) and conditions where the regions of 1ift
are of the order of the distance flown (thermal street flying). In addition,
two categories of models are investigated. Micro-strategy models are used to
analyze the choice of 1lift along a desired course line. Macro-strategy models
are used for studying the influence of choosing a course line to & goal.
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The analysis contained herein assumes parabolic performance polars with
numerical examples computed for parameters typical of a modern standard class
sailplane. The pilot is assumed to fly at the optimal sirspeed for all course
choices since perturbations are assumed to have a minor effect. Since final
glides are not considered and potential energy is conserved, sll models begin
and end at the same altitude, cloudbase. Furthermore, all solutions neglect
survivability, i.e., they assume the pilot will complete the task no matter
which choices are made. Finally, all situations assume that the pilot is far
from & ground referenced goel and that the 1lift is not ground referenced so the
influence of wind can be neglected.

LIST OF SYMBOLS

1l
A Parasitic drag factor, —5 7
2vo2(L/p) .
B Induced drag f ¥o?
nduced dr actor, -—4/——v—
& > 2(n/p)
max

D Distance on course to lift source goal for thermal street model

d Distance on course to lift source goal for thermal models

a' Projected distance of alternate lift source onto course line, Fig. 1

Fl’ F2 Intermediate calculation variables

f Intermediate calculation variable

hCL Altitude gained climbing in street 1ift

hCR Altitude lost cruising between streets

h Average rate-of-climb while circling in thermels ’

hs Rete-of-climb averaged while cruising thermal street 1ift

K Intermediate calculation constant, defined in Appendix C, Equation 3

K' Intermediate calculation constant, defined in Appendix C, Equation 10 |

(L/D) Equivalent to maximum glide ratio in still air t

') Distance flown along street, Fig. 12 ‘
1

oL Listance to fly along street for optimum time ’
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Distance to fly along street for time ejual to not making course
deviation

Non-dimensionalized distance to fly along street, break-away
point

Slope of tangent line
Length of second leg of course deviation, Fig. 12
Total distance of a cruise/climb street cycle

Distance of climb phase of a street cycle
Distance of cruise phase of a street cycle
Value of definirg polynomial for ith iteration

Total deviation distance of using a street parallel to course
line, Fig. 9

Distance of individual legs of course deviation, Fig. 9

Deviation distance ratio of parallel street model, Fig. 9

Time to fly glide/climb thermal cycle on course
Time to fly course deviation

Airspeed while cruising, knots
Optimum speed-to-fly between 1lift, knots

Guess of V¥ during iEE-iteration, knots

Sink rate flying at an airspeed of V¥, knots

Average vertical sinking velocity of atmosphere between 1lift, knots
Airspeed while climbing in a street, knots

Required airspeed to cruise in street 1ift and maintain constant
altitude, knots

Airspeed along legs D, R, n respectively

n
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H VG Average ground speed after a complete glide/climb thermal cycle, knots
1 VGS Average ground speed after a complete glide/climb thermal street 1ift
; cycle, knots
? VMIN Airspeed for miniaum sink rate, knots
; v Speed at which (7/D) occurs, knots
o max
Vs Sink rate flying at airspeed V, knots
Vsn Sink rate flying at airspeed Vn’ knots
WXY, 2 Geomelry labels for course deviation models
X Total deviation distance, Fig. 1
X1s X, Deviation distance legs, Fig. 1 ;
> x/d Deviation distance ratio
y Distance between parallel street and course line, Fig. 9 é
y/d Spacing distance ratio g
|
T Ratio of average rate-of-climb on course to average rate-of-climb :

; along course deviation !

n Ratio of average atmospheric sink rate between 1lift sources to j
N average rate-~of-climb in lift

(o] Ratio of average ground speed on course deviation in augmented 1lift
to ground speed acheived on course with average 1lift conditions

¢ Angle between thermal street and course line

-

Angle of thermal model course deviation

PRESENTATION OF RESULTS

Thermal Models

Micro-Strategy

The first case considered is depicted in figure 1. It represents a
frequert decision confronting the pilot during cross-country soaring. The pilot,
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1 after departing the thermal at X at cloudbase, must choose between staying
on course along ﬁath XZ and achieving the average rate-of-climb for that
time of day at thermal Z or deviating along XY <to the thermal at Y, which

looks as if it might yield a higher achieved rate-of-climb. Then the pilot
returns to the course after deviating to Y by flying to thermal Z. Given
the geometry, the question remains how much grester must be the rate-of-climb
at thermal Y than the rate-of-climb at thermal Z to yield the seme time
for both the direct course and the extended route.

e O SR AT

Figure 2 shows the result for a sailplane representative of the standard
class. The required raie-of-climb in the thermal at Y is plotted against the
non-dimensional deviaticn distance ratio for a variety of average lift
corditions assuming the pilot flies the optimum airspeed, the calculation of
which is shown in Appendix A. The curves in figure 2 can be treated as time
boundaries. Points to the above and left of a curve indicate that a deviatior
would be faster than staying on course whereas points to the bottom and right
represent conditions for which staying on course would be more profitable.

The importance of deviating for minor gains in 1lift whern tue conditions

i are weak is shown by examining the curve for 1 knot averzge rate-of-climb on

| course. A 25% course elongation requires a little over 2 knots rate-of-climb
in the thermal at Y. If the expected rate-of-climb in Z were L knots
(moderate 1ift conditions), a 25% course deviation ratio would need to have an
achieved rate-of-climb better than 15 knots to result in the same time to the
top of the thermal at Z. The implication is that when 1ift conditions are
weak (1-2 knots average rate-of-climb), course deviations would be advantageous
for modest gains in 1lift. Ilowever, for moderate to streng lift conditions
(4 xnots and above average rate-of-climb), sizeable gains in 1ift will permit
only minor deviations from the course line.

This result is further emphasized in figure 3 where the deviation distance
ratio is plotted against a non-dimensionalized lift ratio for a number of lift
conditions. The weak conditions warrant substantial deviation distance ratios
ever. in non-dimensional form while, in contrast, the stronger conditions begin
to coincide upon a boundary requiring large 1lift ratios for any appreciable
distance ratio.

The influence of sailplane performance upon the pilot's decisions is shown
in figure 4. Rate-of-climb required at thermal Y 1is plotted as a function of
deviaticn distance ratio for three classes of sailplanes. Sailplane A 1is the
standsrd class aircraft considered previocusly; sailplane 2 represents & one-
design sport class; and aircraft C represents a sailplane in the open class.
It is readily apparent that sailplane performance has a minor effect on the
pilot's willingness to deviate from course. However, there is a trend for
sailplanes of lesser performance to be willing to make slightly greater course
deviations.

The previous curves were developed with an assumed average atmospheric

subsidence equal to 20 percent of the rate-of-climb (reterence §). As expected,
slight course extersions with this model can be Justified with reduccd sink rate

323

'___,,,_,, N S : - ‘ .d!l-“



Lt

(figure 5). EHowever, the influence of sink rate on the pilot's decision to
deviate from course, assuming that both flight paths undergo the same average
sink rate, is negligible.

An important variable in the geometry shown in figure 1 is 4d'/d. It
impacts the performance of the extended course by determining how much of the
altitude to be regained will be done in the stronger thermal at Y. The
generalized results for d4'/d of .25, .5, and .75 are shown in figure & for
average 1ift conditions of 2 knots and 6 knots. It is readily apparent from
figure 6 that substantially larger course deviations can be justified with
larger values of d'/d. The greater the distance between X and Y for a
given deviation distance ratio, the greater the altitude which is gained in the
stronger 1lift at Y, thereby increasing the achieved speed.

The net result of the foregoing analysis is that the deviation angle, V¥,
should be kept as small as possible. This is especially true for moderate to
strong 1ift conditions. This result is in basie agreement with the macro-
strategy model presented in reference 10 which is of similar format to the
micro-strategy model considered here.

Jt should be noted that the preceding results can be directly applied to a
mcre generalized model including multiple glide/cirecle cycles along the course
line segments XZ &and XY. This is true as_long as the deviation flight path
includes only one glide/circle cycle along YZ. The reason multiple thermals
do not affect the analysis is due to the simplification that net ground speed
is a function of achieved rate-of-climb, so the time to reach cloudbase at the
end of a segment will b. the same no matter how many thermals are used.

The results of another micro-strategy analysis a:: shown in figure 7. Speed
ratic, achieved ground speed with vertical air motion between thermals normal-
ized by achieved ground speed with no vertical air motion between thermals, is
plotted against sink ratio, which is the ratio of average vertical air motion
between lift sources to achieved rate-of-climb in lift for a variety of 1lift
conditions . Negative sink ratios are indicative of what pilots call "reduced
sink," i.e., positive vertical air motion too weak to yield a positive rate-of-
climb, but still result in a reduction of the rate at which altitude is lost.
The curves in figure 7 are continued in the negative sink ratio direction until
"zero sink" (the point at which the net altitude loss during cruising is zero)
is achieved.

Speed ratios greater than 1 can be interpreted as deviation distance ratios.
For example, a spced ratio of 1.1 implies that a pilot could deviate from his
straight line course by 10% and still have the same achieved ground speed for
a complete glide/circle cycle. If %he pilot deviates from course any less, for
the indicated 1lift and sink conditions, a net gain in cross-country speed will
result. These results reiterate the necessity for minimizing sink rate by
making minor deviations during inter-thermal cruise to optimize the achieved
cross=-country performance.
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Macro-Strategy

Macro-strategies involve the choice of courses to & desired goal rather
than the fiight path selection to individual sources of lift. Macro-strategies
are used to fly through regions of improved 1ift conditions. So once a macro-

strategy is developed, an undetermined number of micro-strategies are used to :
fly the prescribed course. i

s PR A RIR I W TR R R

v, The results of the thermal macro-strategy model are shown in non-dimensional

y form in figure 8. Speed ratio is plotted as a function of 1lift ratio for s

7 variety of average lift conditions. As before, the non-dimensionalized speed
ratio can be interpreted as the deviation distance ratio boundary required for
equal time to reach the goal. It is immediately obvious, by comparing figures
3 and 8, that decisions on the macro-strategy level have a much greater impact
upon the achieved cross-country soaring performance than decisions at the
micro-strategy level. A 1lift ratio of 2.0 yields more than twice the speed
ratic for all 1lift conditions for the macro-strategy case in comparision with
the micro-strategy case. The importance of choosing courses that will pass
through more favorable sectors is of greater importance for weak conditions as
opposed to moderate or strong thermal conditions.

Sk e

As before, although sailplane performance and sink between thermals will
affect achieved groundspeed, they have little influence upon the pilot's
decision of when to make course deviations.

Street Models

Many times the pilot will have occasion to utilize convective 1lift while
cruising along course line. This condition where the regions or 1lift make up
a substantial portion of the flight path is usually referred to as streeting.
Making effective use of these large regions of 1lift usually involves speeding
up in sink and slowing down in lift. There have been several analyses of this
mode of flying, for example, references 2 through §5 and 11 through 1. In this
paper, however, simplified and conservative control laws have been implemerted
for studying thermal street flying. For the most part, the pilot flies at the
speed for minimum sink rate while in 1lift until cloud base is reached, at which
time the pilot speeds up and flies so as to maintain altitude. The pilot
cruises between lift as dictated by the equations of Appendix B. As it turns
out, this procedure is not far from the optimum as demonstrated in reference 5.

Micro-Strategy
The first model t¢ be considered is shown in figure 9. The pilot has
reached cloud base at Point W and is trying to get to Point 2Z. He must

decide if flying straight to Z or deviating to use the thermal street along
XY will yield the fastest time to cloud base at Point Z. It is assumed that
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the pilot is capable of achieving an average rate-of-climb along XY equal to

h
s
: half the rate-of-climb obtainable from cireling in thermals on course -~ = 0.5,
; h

Optimal inter-1ift cruising speeds are obtained from Appendices A and B. The
pilot uses the control law previously mentioned for cruising in the 1ift along

xv.

The results are shown in figures 10 and 11 for this model. Boundaries of by
deviation distance ratio, s/D, yielding the same time to cloudbase at Z are
plotted against average lift conditions for a variety of street length ratios,
s'/D, in figure 10. As anticipated, the geometry of the situation confronting
the pilot has a much greater influence on nis decision than rate-of-climrh, sail-
plane performance or inter-lift sink. Cbviously, the greater the length of

XY (s'), the greater the distance the pilot should be willing to transverse to
improve his cross-country soaring performance. Course deviations for weak
conditions can be about 10% longer than for moderate to strong conditions.

A more convenient way for the pilot to picture how far of a course
deviation is warranted is shown in figure 11. It is a plot of curves showing
allowable spacing-distance ratio, y/D, against achieved rate-of-climb for street

- length ratios of 0.2 and 0.8. Spacing distance ratios of about 35% and 45%
R respectively are Justified for weak conditions while spacing distance ratios
of about 25% and 35% are allowed for moderate to strong thermal conditions.

The second micro-strategy thermal street model is shown in figure 12. The
pilot has Just reached cloudbase in & thermal at X and desires to reach cloud-
base at the thermal at point Z. He must decide between flying directly on
course or deviating to use the street along XY and then flying to Z. It is
assumed that the average vertical atmospheric velocity along XY is equivalent
to that which would yield half the rate~of-climb from thermalling at points X
or Z. The pilot flies along XY at the speed which ¥ields no net altitude

]
change and then flies along YZ at the speed-to-fly indicated by the methods of 3
Appendix A. !

Prior to analyzing the model, it is necessary to determine the opt imum
method of flying the street and the sensitivity to variations from the optimal
prccedures. Figure 13 is a series of plots showing speed ratio, i.e., the
speed obtained by deviating to fly the street at angle ¢ normalized by the
speed obtained flying straight ahead in the classical circle/glide manner, as a
function of breakaway distance ratio, 2£/D, for a variety of street angles.
Speed ratios greater than one correspond to flight path extensions whieh would
yield a faster time to cloudbase at Z than the straight-ahead choice. PFig-
ure 13 shows the following: 1) there are many ways to fly the thermal street so
as to obtain a speed ratio greater than 1; 2) there exists, for thermal street
angles less than about 60°, an optimal distance along the street tc break away
and begin flying toward 2 to optimize cpeed ratio; 3) this optimum breakaway
distance is highly sensitive to street angle and not very sensitive to rate-of-
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climb; 4) the greatest speed ratios are obtained with small angles and weak
lift conditions; and, 5) optimum speed ratio is highly sensitive to breakawvay
point for weak 1lift and small street angles.

The breakaway point which yields equal time to fly the street and the
straight ahead glide/circle cycle and the breakaway point for the optimum time
by flying the street is analytically derived in Appendix C. The locus of
bres.kaway points for equal time (straight ahead versus deviating along the
street), £'/D, and optimum time, &*/D, is shown as a function of obtainable
average rate-of-climb thermalling for a variety of street angles in figure 1h.
The optimum breakaway point from the street is not greatly affectea by average
rate-of-climb whereas the breakaway point for equal time can be extended
along the street substantially during weaker conditions as compared with
moderate to strong lift conditions. As expected, figure 15, which shows obtain-
able speed ratio for a variety of thermal street angles, indicates that the
largest gains in speed ratio from flying the thermal street are possible with
weak conditions and/or small thermal street angles.

The influence of street angle on breakaway points for optimum time and
equal time is shown in figure 16. It is clear that deviating along a street
is not beneficial for street angles of 60° or more. In addition, it can be
observed that there is a very large margin between the locus of points equal
time and optimum time, indicating that the pilot can choose a large number of
breakaway points and still improve his performance. Even so, it would probably
be beneficial for the pilot to study this plot and develop rules of thumb for
deciding upon the optimum breakaway point given a geometry and lift condition.
For example, neglect obtainable average rate-of-climb thermalling and just
decide by reference to street angle--15° fly an /D of 90%; 30° fly an &/D
of T0%; 45° fly an 2/D of 50%; and 60° and greater fly straight ahead
ignoring the street. The magnitude of the benefits to be obtained from devi-
ating along streets as a function of street angle is demonstrated in figure 7.

Macro-Strategy

The equations for studying the effect of streeting are developed in
Appendix B. The macro-strategy model tc be considered is basically the same as
considered previously except that some portion of the course deviation is under
the influence of convective lift. As before, it is assumed that the average

vertical air velocity encountered while cruising is equivalent to half the
achieved rate-of-climb in thermals.

It is assumed that after a long enough stretch of cloud street flying that
the net change in altitude is constrained to be zero. This is valid only at the
macro-strategy level because the pilot might be willing, in the short term, to
tolerate slow loses of altitude in order to make progress along the desired
course. The required ratio of distance flown while climbing to total distance
covered is plotted in figure 18 against achieved rate-of-climb in thermals for
3 sailplanes. The sport class sailplane requires considerably more of the flight
path inlift than the other two classes studied. It should also be remembered that
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this assumes static equilibrium fligit and neglects the performance differences

due to the dynamics of pulling up and pushing over, which should increase the
differences between classes. Some of these dynamic effects have been studied \
previously, for example, reference 1h.

The importance of deviating from course to be able to cruise while
climbing is shown in figure 19. Speed ratio is shown as a function of rate-
of-climb achievable by thermalling for three ratios of distance covered while
climbing in thermal streets to total distance covered. Here it is assumed ,
that in order to have no net change in altitude after a long period of time, !
one of two approaches must be taken: 1) if there is more 1ift availeble than
necessary to maintain altitude, the excess will e used to increase speed at
cloudbase until no net change in altitude will occur; oOT, 2) if there is not
enough 1ift available to maintain altitude, the pilot will circle to cloudbase
at the end of the cruise at the average rate-of-climb expected in thermals at
that time. The fourth curve is a locus of points obtained from figure 18
showing the achieved performance if the ratio of distance covered climbing to
total distance covered were at the correct value to yield no net altitude
change from climbing by cruising at the speed for minimum sink and cruising
bvetween lift at the appropriate speed-to-fly (Appendix B).

H
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Several assumptions have been made during the development of the street
flying analyses which need to be considered. The authors have studied the
influence of sailplane performance and inter-thermal sink and found that,
although the cross-country performance may be significantly affected, the
pilot's decision in regards to non-dimensionalized course deviations is not
altered. The assumption that the average vertical atmospheric velocity
encountered while climbing is 50% that of the vertical air velocity obtainable
in thermals at the time does influence various parts of the analysis. It is
felt, however, that this does not have a major impact upon the trends demon- J
strated in this paper. Furthermore, neglecting winds in these analyses
probably would affect the decisions a pilot would make during cross-country
street flying. Thermal streets are usually fostered by gentle winds and the
inclusica of this factor warrants further research. As exemplified in
reference 15, the pilot would probably be willing to make further progress
against the wind in streets than the optimum solutions for still air reported
herein.

SUMMARY OF RESULTS

Several trends came out of the analysis of the thermal models in this
paper. It is apparent that decisions to deviate from course are of much
greater significance gt the macro-strategy level than the micro-strategy level.
A pilot can enhance his performance by choosing sectors of the sky to improve
his achieved rate-of-climb. At both the micro- and macro-strategy levels it
is clear that sutstantial deviations from course may be warranted for weak
11ft whereas when the thermal conditions are moderate or strong, only very
minor course deviations can be justified. In all cases, cross-country
soaring performance can be augmented by making course deviations with the

e e e T

328




smallest possible deviation angles. This indicates that pilots should make
course change decisions as soon as possible and be willing to ignore 1lift not
near the course, which is especially true for mcderate or strong lift.

A large improvement in average cross—country speed is attainable by
cruising while climbing, such as in streeting conditions. In the street models
considered, the percentage of the flight path in 1ift had a big influence upon
the achieved performance and pilot's decision criteria. In the case of the
parallel street micro-strategy model, streets with spacing distance ratios of
30% or less could be Justified to increase the attained cross-country speed.
Deviation distance ratios can be extended by about 10% for weak conditions as
compared to moderate or strong 1lift conditions.

The study of streets at an angle to the course line results in some
interesting observations. There exists an optimum point of breakaway from the
street to minimize the time required to reach the top of the next thermal,

This breakaway point is primarily a function of street angle. Although the
optimum augmentation of speed is highly sensitive to breakaway point for weak
conditions at small street angles, for most combinations of street geometry and
1ift conditions there exists a range of possible solutions which yields a faster
time than the straight ahead glide/circle cycle. It can be shown that cloud
streets at an angle greater than 60 degrees are not beneficial and should not

be used to improve average ground speed.

CONCLUDING REMARKS

Several assumptions have been made which may affect the applicability of
the results reported upon herein. A premise for all the cases studied was that
Survivability is ignored. Speed was considered as the performance function
tc be optimized whereas if the pilot was concerned about not being able to
complete the flight, altitude conservation would be of prime importance.

A constraint for easch exercise was that net altitude loss would be zero;
hence, the results are not applicable to final glides. A possible focus of
future research may be to study the impact of course deviations upon final
glides. Also, it was arbitrarily assumed for the street models that average
lift in a street was approximately 50% of the 1ift found in thermals at that
time. This has an obvious impact upon the performsnce gains of deviating to
use streets, but general trends of the analyses are stili valid.

A significant limitation of the approach presented in this paper is the
assumption implied by considering lift as solely air referenced. This negates
the influence of winds for reaching ground referenced goals or 1ift sources.
It is expected that decisions reached during the street analysis will be
shifted into the wind. For example, the pilot will probably want to make more
progress into the wind while in 1ift than otherwise indicated by the breakaway
point solutions. Since thermal streets are usually formed in light to medium
winds, the inclusion of winds in the foregoing analyses is currently being
undertaken by the authors.
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The models developed in this paper are simplified and general in nature.
It is hoped that they or a linear superposition of more than one of them are
representative of typical lift geometries a pilot may encounter during a cross-
country soaring flight. The results presented in this paper are not meant to
be cockpit aids for interpreting the most promising flight paths. Instead, they
illustrate the desirability and indicate an approach, for analytically studying
typical course selection decisions beforehand, enadbling the pilot to more
effectively evaluate the potential tradeoffs for arriving upon a more optimal
solution while in flight.
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APPENDIX A

LIRS TS

R A

OPTIMUM SPEED-TO~-FLY CALCULATIONS FOR THERMAL MODELS

To facilitate the calculations required in this paper and in other

| investigations (reference 16), analytical expressions needed to be derived for
- l the familiar inter-thermal speed-to-fly solution (reference 1). Although the

i defining equations are easily derived and have been presented in numeious
publications (for example, references 3 and 5), a closed form analytical
solution for caslculating numerical results is not generally available in the
literature and is given below. The graphical interpretation of the results
which is widely used by pilots is shown in figure 20. The first case considered
is where the sailplane performance is known and is assumed to be parabolic; the
average rate-of-climb in the next thermal is known; the ratio of sink rate
between thermals to rate-of-climb in them is known; and the optimum speed-to-
fly between the thermals and the corresponding average ground speed is desired.
The sailplane performance relation is:

FIRLE:

- 3 E 1)
Vo= AV ¢ (A1}
where
A= '21— (A2)
2vo (L/D)max
v 2

B = = (A3)
QIL/D;max

The defining equation can be found from figure 20 or by derivation to be

=4
=3v's (Ak)

By applying the definition of sink ratio, n, and utilizing equations (Al),(A2),
and (A3), equation (AL) becomes the following fourth degree polynomial:

vh_Ml_zz_niv-

> |

=0 (45)

The root of interest was found to be calculated by the following relations:
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V* = > (A6)
)
= %/fﬁi +Fy+ %/fFl - F, (A7)
F___1+n2f12 \
1 842 (a8)

Il + nhy" | B3
F2 = )4 + 3 (A9 )
6hA 2TA

The average ground spe=d for a complete glide/circle cycle is given by

Vg = — V*h _
AV*” + B/V¥ + (1 + n)h

(A10)

The second case considered is where the sailplane performance is known in
the form as before, the sink ratio can be assumed, the desired average ground
speed is known, and the optimum speed-to-fly and the required rate-of-climb
given the preceding are to be found. The defining equation can ve easily
attained from figure 20 by equating the slope of the tangent line,

v
S

v -
v (1 + n)VG

m = (A11)

to the slope of the sailplane polar found by differentiating equation (A1)

_ o . B
E%Vs = 3V - v2 (A12)
The defining equation for the optimum solution becomes
5 3 L B B
* - = * L =Y — =
v 1 + vV T+ 2A(1 + .q)VG 0 (A13)
Use Newton's method for estimating roots. Let
- 5 _ 3 #l » B
q = V¥ - 21+ vy B+ o1+ )Y (AL4)
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ﬁ;ql = sv’i'“ - 6(1 + m)v vy -2 (A15)
then,
Qi
Viel = Vi - a_ (A16)
dV*Ql

A fair

Just five iterations in this manner.
for an average ground speed of VG is given by the

A good initial guess for V; could arbitrarily be Vo + 5(1 + n)ﬁ.

amount of accuracy can be obtained with
The required rate-~of-climb
following relation:

*3 #*
AVGV + BVG/V

" (A17)
Ve - (1 +n)VG

h =

33
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APPENDIX B

OPTIMUM SPEED-TO-FLY CALCULATIONS FOR THERMAL STREETS

o The defining relations and a geometric interpretation (figure 21) of the

- optimum speed-to-fly between 1ift, given the sallplane performance, the inter-

1ift sink ratio, the rate-of-climb and the speed at which the lift is trans- ‘
versed (VCL), were presented in reference 5. The defining equation is !

V +h +V
s S at
dv s vé - V

CL (BL)

Assuming & parsbolic polar, equations (a1), (A2), and (A3), the following fifth

degree polynomial can be derived

BV
#5 3, %k _ (1 +m)>ox2 B CL _
v v V¥ - Sy - AV* s =0 (B2)

2 CL

Newton's iterative method of estimating real roots was used to solve the
fifth degree equation for the desired roov.

Let :
5 3. gk _(em)p o B, B |
Q =v] -3V - Tam Ps'i Vit sV (B3
d g #3 (L+m): B
w5y - VeVyT T T A nV - % (B4)
then
Q.
» !
Vier T vy ] (85)
Y

A good valus for the initial guess of V: might arbitrarily be the
solution to the thermal model problem developed in Appendix A. A near optimum
value for the climbing velocity, VCL’ would be the speed for minimum sink rate,
V' .

MIN

-y T 2= 3AV° - %5 (B6)
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= _B _
Vyry = T 1/3 (BT)

<3
L}

MIN .7598 v (B8)

The average ground speed for & complefe cycle, as pictured in figure 22,
is calculated as follows:

-

h
_ S
Ves = T2 5 " Vumn (B9)
vt - 2
v¥2

These equations were derived assuming that the net altitude change after
each cruise/climb cycle was zero. Referring to figure 22, a relation can be
derived to yield the proportion of the flight path which must be under the
influence of 1ift to result in no net altitude change after each cycle
(hCR/hCL =1).

Starting with

Re n |
ey = 1 ) (10
CR é
Rar
ho = V—C-Iihs (B11)
CL
and
Ror,
R R
C
o Ver a12)
‘CL
1+ IR—
CR
The following equation is derived
»
hCL VCL Vs
oy A Gad A G
CL CR s

R )
= —To%
R h v v Bl
CR CL CL S (B13)
1 +y— - _+n
h v h
CR s

A plot of RCL/R as a function of ﬁs for three sailplanes is shown in
figure 18,
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In the event that there is s larger proportion of the flight path under the
influence of 1lift than required for nec net altitude change, then the pilot needs
to cruise at a velocity which gives a sink rate equal to the vertical air velo-

city to keep from climbing into the cloud. This airspeed can be calculated as
follows:

ER A AVS + B/Y (B14)
Fevov,
v 2N aE (1)
CR 2 2
f=@F1+F2+\3/F1-F2 (B16)
s (B17)
F. = — B].'.(v
1 2A2
3
64B
F = 5 - —— (BlB)
2 ITI 27A3
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APPENDIX C

CALCULATION OF BREAK-AWAY POINTS FROM
A CLOUD STREET AT AN ANGLE TO THE DESIRED COURSE

.
§

Using the geometry defined in figure 12, a relation can be defined to
determine the appropriate breakawey points in terms of sailplane performance
parameters and atmospheric 1ift conditions. The first case considered is
finding the breakaway point, the distance to be flown along the street, L, to
yield the same time to the top of the thermal as Z as by flying directly from

X to 2. The time to fly alcng the street, fly to Z and then climb to cloud-
base at Z 1is given by:

V *
D =t R ——m> (c1)
L n n\h h
2 n Vsn >
T, =c—+—[1+——+n (c2)
n Vl Vn N
if
K=1+—=C+n (c3)
h
then
_ R n._
TRn TV * v K (k)
'3 n
Using the Law of Cosines
n° = p° + 2% - 2D cos 0 (cs5)

Squaring equation (Ch)yields

2 2
0 7 Ton v = 72 -D + 2% -~ 2D cos ¢ {cT)
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From the definition of completing either route in equal time and from the
assumptions of Appendix A, Vn and VD are equal since they are both calcu-

lated based o.1 the thermal at Z, the following can be written:

v

= = —D ———sn = _2_

Ton = Tp = 7 <1 + =20y n) 7K (c8)
n h n

Substituting (C8) into (CT) results in

22 Xﬁi K2 + 2 2DK) K 5 Xﬁ =0 (c9)
VQE - { cos ¢ - Vg = 9

If we define the following constant,

<

n 1
' s e =
K' = T % {C10)
L
then equation (©9) can be solved for the roots as follows
Q,’
1l _ ~
D= 0 (c11)
2!
2 _2 (cos $ = K')
- 2}
D 1-kK'" (c12)

The second case considered is the solution for the non-dimensionalized
*

breakaway point, %53 for minimum time to reach the top of the thermal at 2.

Starting with equation (Ch) and substituting the square root of equation (C5)
into it, the fellowing franetion is obtained:

) o VoL
SN A 4 (n“ + 07 - DL cos @) 2 (c13)
(AS] VQ Vn !

"he minimum time solution for Tln is found by differentiating with respect to
£ and setting it to zero.
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d - 1 K £ = D cos ¢
=T Z0=g=+7 (c1k)
a% “in vl Vn (D2 + 22 - 2D cos ¢) £

Rearranging (C14) and substituting in equation (C10) gives the
following quadratic equation:

22 (1 - K'E) + % (213 cos ¢) (K'2 - 1) + D% (cos2 ¢ - K'2) =0

(c15)
The root of interest from equation (C15) 1is
* 12 f 2
%;-= cos ¢ = K (:l — ?ZS ‘Q) (c16)
(1-x")
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b T

The present paper concentrates on the derivation and intepretation of the
hecessary conditions that a sailplane cross—-country flight has to satiasfy to
achieve the maximum global flight speed. Simple rules are obtained for two
specific meteorological models. The first one uses concentrated lifts of vari-
ous strengths and unequal distance. The second one takes into account finite, :
non~-uniform space amplitudes for the lifts and allows, therefore, for dolphin- !
style flight. 1In both models, altitude constraints consisting of upper and
lower limits are shown to be essential to model realistic problems. Numerical H
examples illustrate the difference with existing techniques based on local
optimality conditions.

INTRODUCTION

The problems associated with the optimization of sailplane flight paths to
achieve maximum cross-country speeds have recently received special attention
in the literature. This has been stimulated by the modern competitive soaring
which consists almost exclusively in racing and by the development of high
performance sailplanes allowing for new, highly efficient flight techniques.
Starting with the now classical MacCready (1) results, most of the investiga-
tions have been concerned essentially with local optimization problems, that
is, finding the optimum flight strategy for various specific situations
encountered in a short section of a flight [1 to 10].

In recent papers (2, 4, 5, 8] the optimum speeds to fly in a variety
of atmospheric vertical velocity distributions have been determined from the
basic assumption that the correaponding flight segments had to be crossed
with zero net altitude loss. Conditions under which a transition from the
circling mode of climb to the dolphin or essing modes has to be decided have
been examined (4]. Although such results yield extremely valuable guidelines
for selecting a flight strategy, they only optimize the speed over a limited
portion of the total flight.

It is well known, however, in optimization theory that a succession of
locally optimum solutions does not, in general, lead to a globally optimum
result [11]. 1t is worth pointing out that a globally optimum flight strategy
can only be determined if the assumption is made that the distribution of
atmospheric velocities over the whole flight path is known in advance and
is independent of time. Although this is never achieved in practice, it is
felt that the derivation of global optimality conditions allows for a new
insight into the sailplane flight technique by giving a posteriori the deci-
sions that the pilot should have taken and the influence of factors that have
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